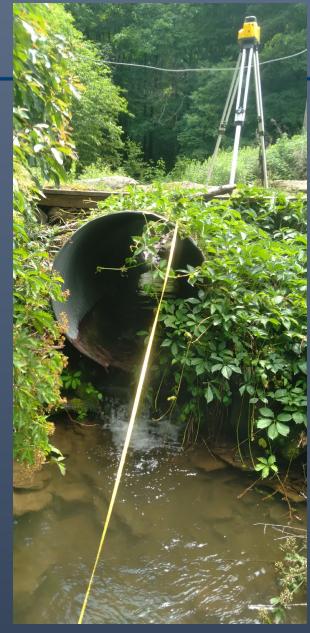


Right Size that Culvert!

A Practical Overview of Right-Sizing Considerations



Today's To-Do List

- 1) Basic overview of NAACC.
- 2) Understand basic stream principles
- 3) Recognize common features of an Undersized Crossing
- 4) Recognize common features of Passage Barriers
- 5) Identify factors that guide Right Sizing Designs
- 6) Identify Resources for Assistance.

QUESTION: HOW MANY CULVERTS DO YOU DRIVE OVER EVERY DAY? I cross 9 culverts on the 5 mile drive to school drop off!

NAACC Road Stream Crossing Assessments

- Methodology to Identify and Assess Road Stream Crossings.
- Conducted by trained observers (SWCDs, DEC, Nonprofits: TU, TNC)
- Record features of crossings, ie:
 - Location,
 - Size,
 - Type,
 - Condition,
 - Alignment
 - Constriction
- Rate the passage capability of the crossing.
- Serves as Level 1 Prioritization for future work.
- https://streamcontinuity.org/naacc

Search Crossings

LogIn

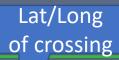
Welcome to the NAACC Data Center!

This website stores all the North Atlantic Aquatic Connectivity Collaboratic Excel or Shapefile format without logging on. If you are logged on, pages user data and download the Offline Data Manager. Only certified NAACO page.

About the NAACC

The <u>NAACC</u> is a network of individuals from agencies and organizations crossings (culverts and bridges) to assess and score crossings for fish ar

Contact


contact@naacc.org

Anyone can access the data compiled about crossings in their area of interest.

How to use the online NAACC Tool

ation (choose multiple towns, watersheds):	Other:	Dates:
w York [30155]	Survey ID:	"Date observed" is not
atodagay [190]		available
atham [365]	Crossing Code:	Last updated from
autauqua [0]		All
azy [55]	All NAACC Evaluations 🕶	Last updated until
eektowaga [0]	, , o	All
NY streams	·	
	25 per page 🗸	Date observed from
NY Watersheds		All
sable River	Choose Data Sets (choose multiple):	Date observed until
ck	Non-tidal Connectivity Assessments	All
nx	NAACC (after 6/1/2015)	
onnel:	UMass Stream Continuity Project (2005-2017)	
	Connecticut (2004-2013)	
y Observer •		
	Maine (2007-2015)	

Showing 400 Records , 25 per page. Sort by any field

Next [375]

Survey ID	Crossing Code	Date Observed	<u>Last Updated</u>	<u>Town</u>	<u>Stream</u>	<u>Road</u>	Evaluation	Culvert
30188	xy4248665773558329	2016/05/03	2016/05/09	Chatham NY	unnamed	ny 66	ny 66 Significant barrier	
30189	xy4248586873559350	2016/05/03	2016/05/09	Chatham NY	unnamed	ny 66	Severe barrier	1
30190	xy4248570873560038	2016/05/03	2016/05/09	Chatham NY	unnamed	ny 66	Severe barrier	1
30191	xy4248053573566544	2016/05/03	2017/12/05	Chatham NY	Green Brook	ny 66	Insignificant barrier	1
30204	xy4247573173580307	2016/05/05	2016/05/09	Chatham NY	unnamed	Pratt Rd	Severe barrier	1
30205	xy4247130673589800	2016/05/05	2016/05/09	Chatham NY	Unnamed	Hoes Rd	Insignificant barrier	1
30206	xy4247546973591246	2016/05/05	2016/05/09	Chatham NY	unnamed	Albany Tumpike Rd	Severe barrier	1
30207	xy4248208473573541	2016/05/05	2016/05/09	Chatham NY	unnamed	Bachus Rd	Severe barrier	1
30208	xy4248251573575342	2016/05/05	2016/05/09	Chatham NY	unnamed	Pratt Rd	Severe barrier	1
30209	xy4248085273572944	2016/05/05	2016/05/09	Chatham NY	unnamed	driveway off Bachus Rd	Significant barrier	1
30210	xy4248110573573150	2016/05/05	2016/05/09	Chatham NY	unnamed	driveway off Bachus	Moderate barrier	1
30211	xy4248419973575398	2016/05/05	2016/05/09	Chatham NY	unnamed	Fredenberg Rd	Moderate barrier	1
30212	xy4247739773578641	2016/05/05	2016/05/09	Chatham NY	unnamed	Pratt Rd	Severe barrier	1
30213	xy4248460173574853	2016/05/05	2016/05/09	Chatham NY	unnamed	Pratt Rd	Severe barrier	1
30215	xy4248064873575619	2016/05/05	2016/05/09	Chatham NY	unnamed	Pratt Rd	Moderate barrier	1
30396	xy4246992573532314	2016/05/13	2016/05/18	Chatham NY	unnamed	County Rd 13	Severe barrier	1
30397	xy4246961273529636	2016/05/13	2016/05/18	Chatham NY	unnamed	County Rd 13	Significant barrier	1
30398	xy4246981873527374	2016/05/13	2016/05/18	Chatham NY	Green Brook	County Rd 13	Severe barrier	1
30399	xy4247429273523312	2016/05/13	2016/05/18	Chatham NY	unnamed	County Rd 13	Significant barrier	1
30400	xy4247450973523392	2016/05/13	2016/07/26	Chatham NY	unnamed	private driveway off county rd 13	no score - missing data	0
30401	xy4247921373521869	2016/05/13	2016/05/18	Chatham NY	unnamed	County Rd 13	Significant barrier	1
30402	xy4247170673525317	2016/05/13	2016/05/18	Chatham NY	unnamed	County Rd 13	Minor barrier	1
30403	xy4248307973539440	2016/05/13	2016/05/18	Chatham NY	unnamed	Ashley Hill Rd	Moderate barrier	1
30404	xy4248180973540082	2016/05/13	2016/05/18	Chatham NY	unnamed	Ashley Hill Rd	Severe barrier	1
30428	xy4244483873565854	2016/05/20	2016/05/20	Chatham NY	unnamed	Albany Turnpike Rd	Severe barrier	1

Next [375]

https://streamcontinuity.org/naacc

Survey ld: 30206 Crossing Code: xy4247546973591246

AOP Coarse Screen: No AOP NAACC Aquatic Passability Score: 0.11

Data checked and accurate by Josh Thiel on 07-20-2016

xy4247546973591246(downstream)5-5-16.jpg

Non-tidal Aquatic Connectivity Crossing Data

Database Entry By: No data

Coordinator: Josh Thiel

GPS to Crossing Distance (meters): 0.0

Crossing Code: xy4247546973591246

Date Observed: 05-05-2016

Town/County: Chatham, NY

Road: Albany Turnpike Rd

GPS: Lat: 42.47547, Long: -73.59125

Location Description: intersect albany turnpike rd and syring rd

Crossing Type: Culvert

Flow Condition: Moderate

Tidal Site: No

Road Fill Height (feet): 3

Bankfull Width Confidence: No data

Tailwater Scour Pool: Large

Crossing Comments: stream takes 90 degree turn left downstream

Entry Date: 05-09-2016

Last Updated: 05-09-2016

NHD-HUC8 Watershed: Middle Hudson

Local ID: No data

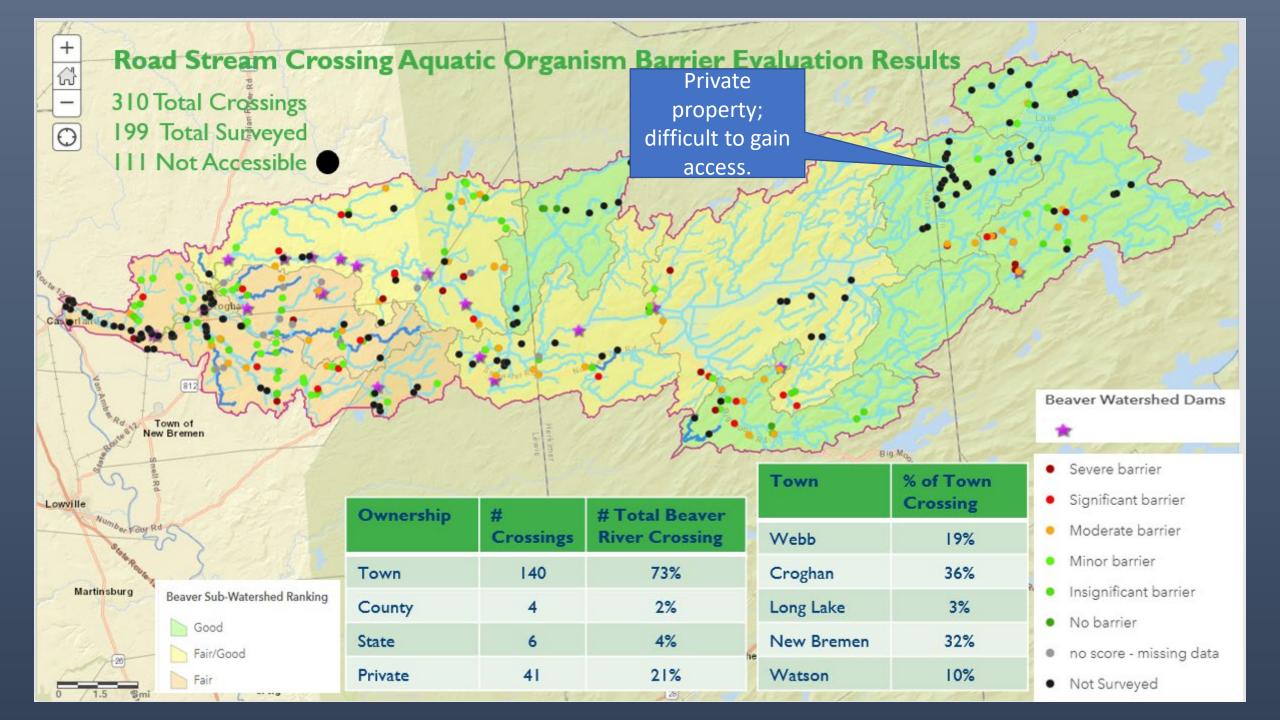
Lead Observer: Erica Capuana

Stream/River: unnamed

Type: Paved

Number of Culverts/Bridge Cells: 1

Crossing Condition: OK


Alignment: Flow-Aligned

Bankfull Width (feet): No data

Constriction: Severe

- Great baseline information.
- Identifies priorities.
- Next steps:
 - Connect with highway supers,
 - Assess from a design/build standpoint.
 - Funding & Access are critical.

Evaluation of this stream crossing is estimated as: SEVERE BARRIER

Prioritization - Multiple Objectives to Prioritize Sites

Municipal Priority

- Maintenance Issues: (Wood, boulders)
- Public Safety Concerns
 - Flooding
 - Failing structure (headwalls, wingwalls, road)

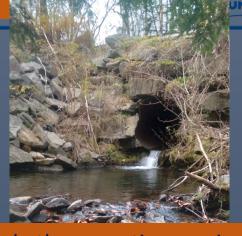
Ecological Priority

- Aquatic Passage
- Priority Watershed
- Miles reconnected
- Habitat Quality
- Brook trout value
- Freshwater Type
- WQ Standard

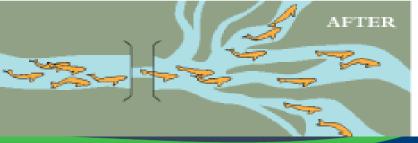
Community Priority

Current Flood Risk Future Flood Risk

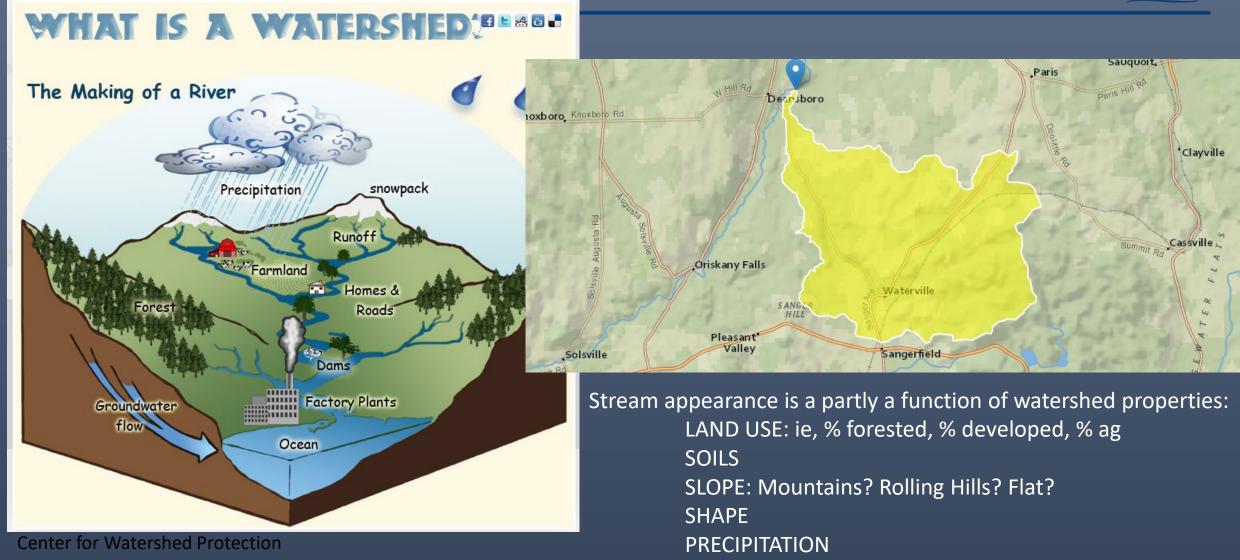
What can go wrong with an undersized crossing?

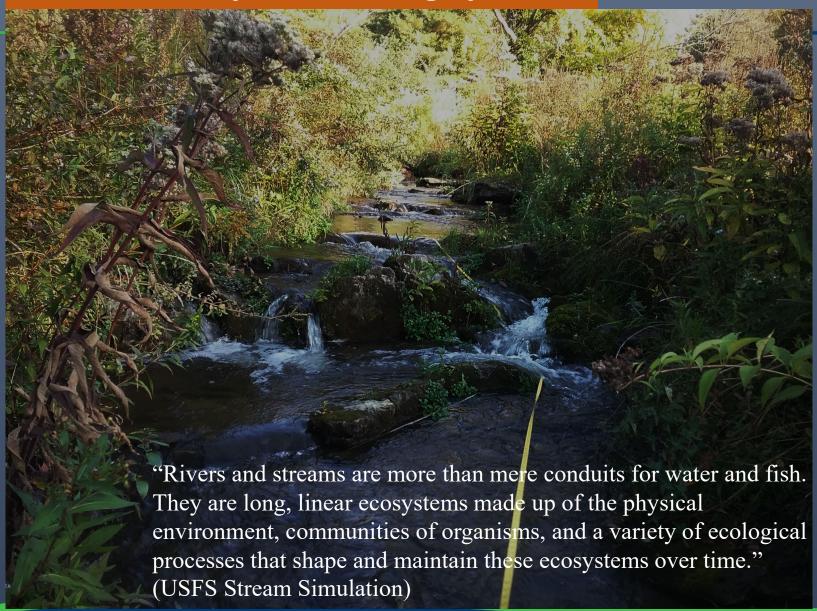

- Public Safety Hazards
- Costly Maintenance
- Frequent Response/Maintenance Efforts
- Property Damage, and
- Habitat Disconnection

Access driveway required to hog out material -even in small events.



Undersized culvert failed in large event and took road with it.


Trout and other aquatic organisms need connected streams to thrive and to complete their life cycle.


Stream Basics: What is a Watershed?

Streams are dynamic, living systems!

Stable streams convey flows and transport sediment without excessive erosion or deposition.

They are stable for **both** the human community and the aquatic and terrestrial organisms that reside there.

Stream Functions Pyramid

A Guide for Assessing & Restoring Stream Functions » FUNCTIONS & PARAMETERS

We can't achieve good habitat unless we get the other steps correct.

BIOLOGY » FUNCTION: Biodiversity and the life histories of aquatic and riparian life » PARAMETERS: Microbial Communities, Macrophyte Communities, Benthic Macroinvertebrate Communities, Fish Communities, Landscape Connectivity

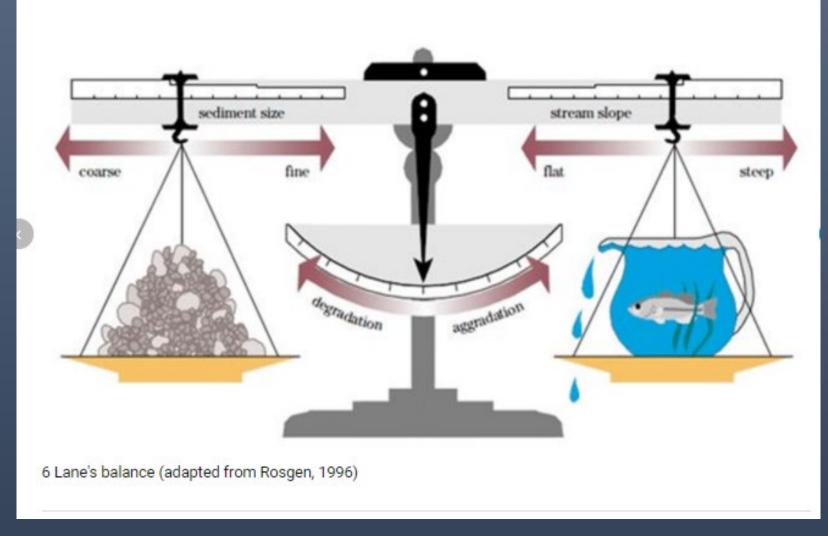
By the time a stream can support good habitat, it's stable for human purposes as well.

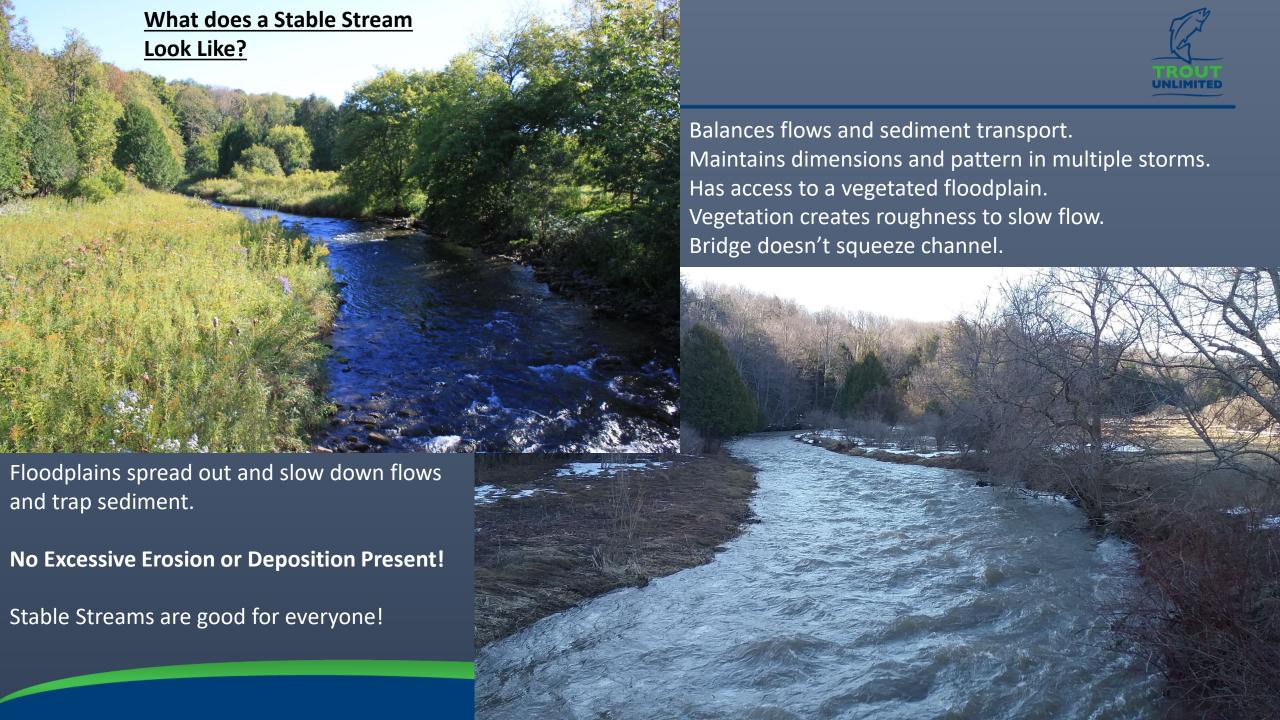
PHYSICOCHEMICAL » FUNCTION: Temperature and oxygen regulation; processing of organic matter and nutrients » PARAMETERS: Water Quality, Nutrients, Organic Carbon

GEOMORPHOLOGY » FUNCTION: Transport of wood and sediment to create diverse bed forms and dynamic equilibrium » PARAMETERS: Sediment Transport Competency, Sediment Transport Capacity, Large Woody Debris Transport and Storage, Channel Evolution, Bank Migration/Lateral Stability, Riparian Vegetation, Bed Form Diversity, Bed Material Characterization

HYDRAULIC » FUNCTION: Transport of water in the channel, on the floodplain, and through sediments » PARAMETERS: Floodplain Connectivity, Flow Dynamics, Groundwater/Surface Water Exchange

HYDROLOGY » FUNCTION: Transport of water from the watershed to the channel » PARAMETERS: Channel-Forming Discharge, Precipitation/Runoff Relationship, Flood Frequency, Flow Duration


eology Climate


Streams move <u>Water AND Sediment</u>. A S<u>table Stream BALANCES</u> water flow <u>and</u> sediment transport.

Sediment:

Streambank erosion
Streambed incision
Landslides
Surface erosion **DEPOSITION**

Water: Rainfall Snowmelt Stormwater Drainage Loss of Greenspace EROSION OF BED AND BANKS!

Unstable: Deposition – Sediment Transport Problems.

Unstable: Over-wide

- Upstream erosion or bed failure.
- Center Bar Deposition upstream of crossing where energy is low.
- Crossing acts like a dam.
- Center bar splits channel
- Both banks become unstable.
- More sediment delivered downstream.

Unstable: Incision (Bed Scour): Erosion Mobilizes Sediment.

Unstable:

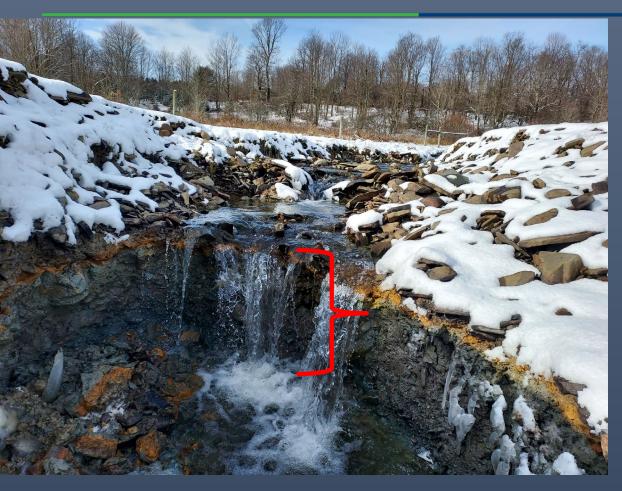
- Bed Scour (Incision) caused by undersized culvert.
- Stream is overly narrow, no floodplain, digs deeper.
- Wing Wall is collapsing.
- When the bed fails, the banks fail.
- Driveway and Road are at the top of the bank!
- Sediment delivered downstream.

No Floodplain:

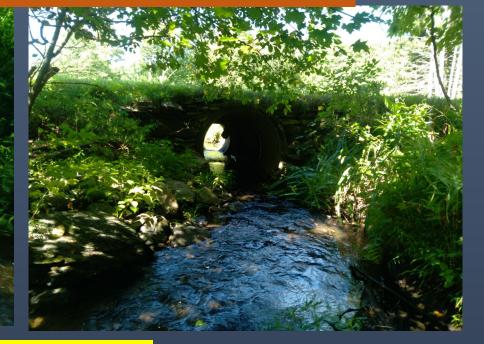
- Channelized,
- Moved to make room for a parking lot,
- No floodprone area,
- Undersized culvert
- Road floods,
- Downstream home incurs flood damages.



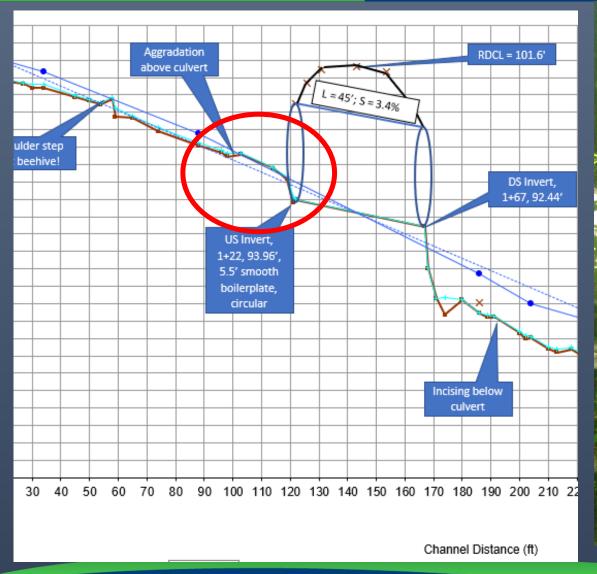
No Floodplain:


- Incised channel
- Flows cannot reach a floodplain;
- Banks undermined.
- Property Damage
- Deposition above crossing.
- HEADCUTTING VIDEO

Headcutting

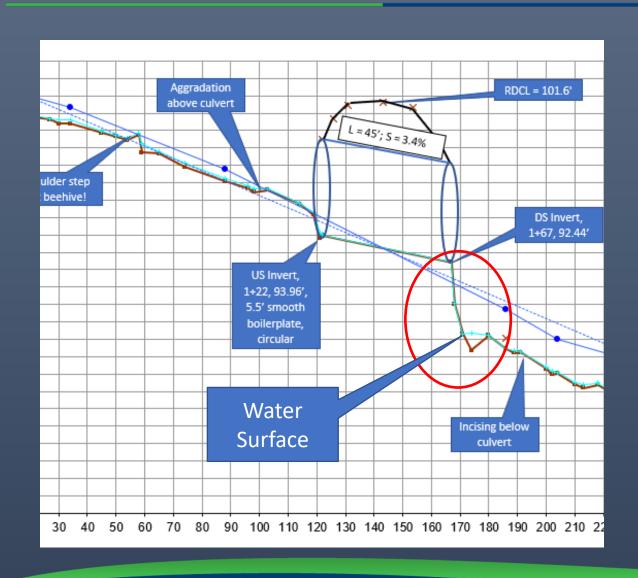

Removal of beaver dam triggered a headcut that moved upstream into the tributary. Approx. 2'.

How Can You Tell if a Crossing is Undersized?


- Channel forming flow
- Enable debris to pass without clogging.
- Make crossing invisible to stream.
- CAUTION: Wetted Width≠ Bankfull Width
- Find Bankfull width ABOVE the influence of the road.

STATE & FED: New Xing 1.25x BF Width!

Undersized Crossing: Acts like a dam on upstream side. Deposition at the inlet leads to post storm dredging.



Undersized Crossing:

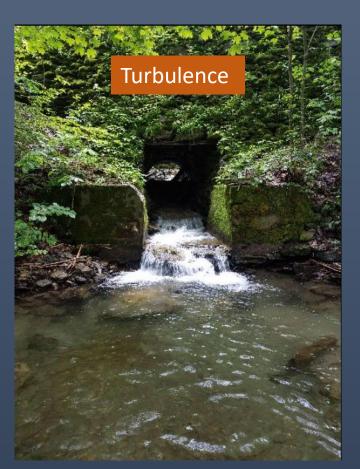
Perched culvert: High Velocity at outlet = High Scour.

Undersized Crossing

Oversized pool at outlet.

Not a Barrier...<u>yet</u> – Important to work toward ensuring that the **Replacement** doesn't become a Barrier!

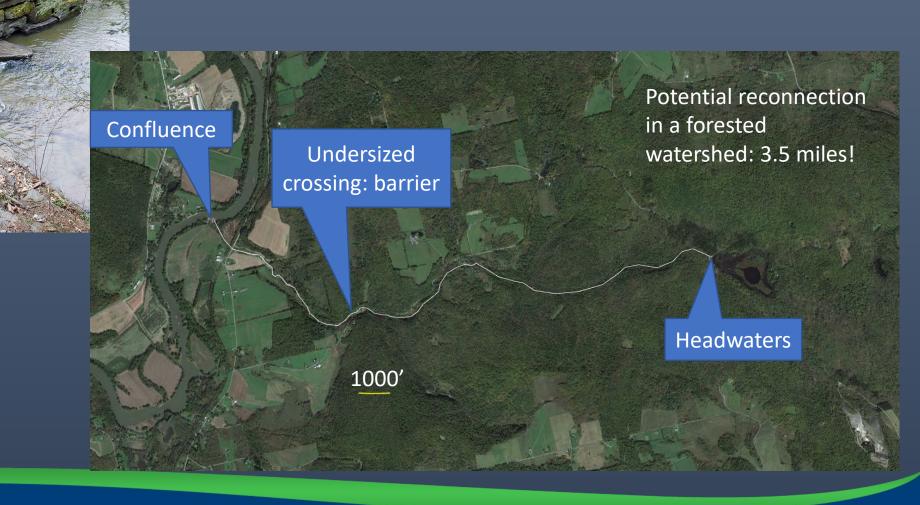
Prevention of a Barrier is Just As Important!



SMOOTH INTERIOR ROUND PIPES AT GRADE ARE <u>VERY LIKELY</u> TO BECOME BARRIERS!!! High velocity through smooth culvert scours the outlet, erodes the bed and creates the barrier.

Aquatic Organism Passage Barriers

- Perched culverts: Free fall >0.7 feet is not passable for most native trout.
- High Velocity: Less than 3 feet/second is ideal.
- High Turbulence
- Shallow Depth: Low flow channel in natural bed is ideal.
- Long Distance (ie, length of pipe): The longer the pipe, the more difficult to make it through the barrel.



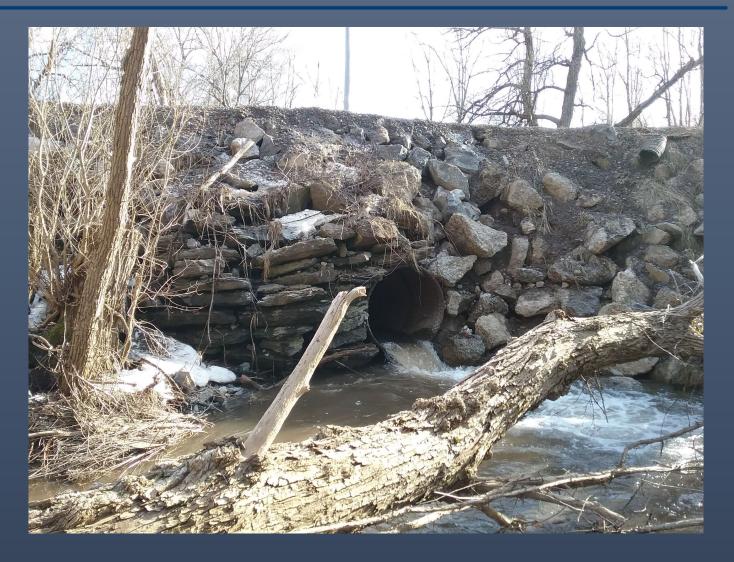
ECOLOGICAL CONSIDERATIONS: HOW MANY MILES OF RECONNECTION ARE POSSIBLE?

Common Goals for a Right Sized Crossing

- Safe structure for the public.
- Provide capacity for future events.
- Reconnected habitat for native species.
- Limited maintenance needs.
- Affordable installation.
- Minimal disruption in road access.
- Stable stream reach.
 - Make the crossing invisible to the stream.
 - Natural, stable bed with ample span to convey flows and debris.
 - Diverse bed features

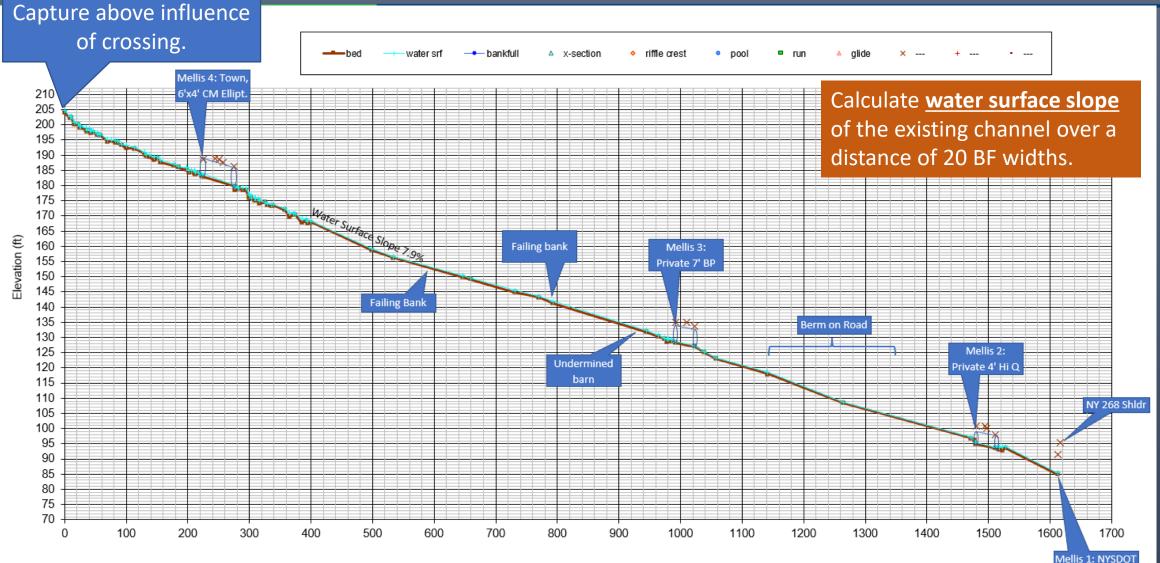
Considerations for Right Sizing a Crossing

- **Cost**: Should not be first on list but economic realities exist!
- Bankfull Dimensions
- Capacity: Flow, Sediment, Wood
- Alignment
- Cover
- Utilities
- Access:
 - Municipal ROW
 - Landowner permission
- Time
- PERMITTING!

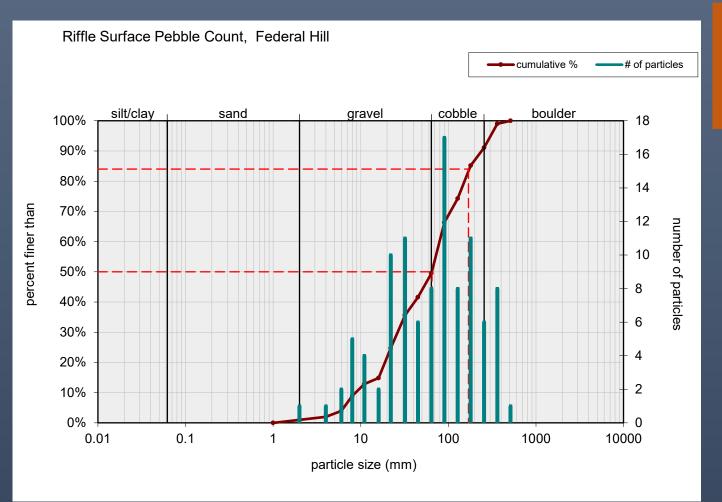


Information to Collect: Site History

- Property Ownership
- Road ROW
- Wood
- Ice
- Flooding
- Road Closure
- Property damage (private and public)

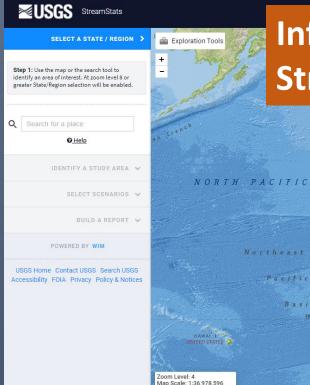


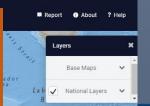
Information to Collect: Longitudinal Profile


Conc Box 10'x4'

US Inv

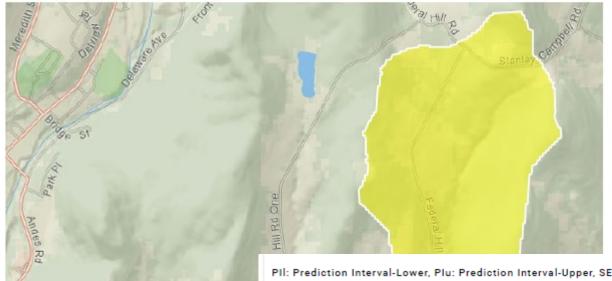
Information to Collect: Pebble Count




- What size moves in which event?
- Helps calculate Shear Stress and Stream Power
- Helps determine what size boulders to use for grade controls.

Size (mm)				
D16	17			
D35	31			
D50	65			
D65	88			
D84	170			
D95	300			

Information to Collect: Stream Dimensions


StreamStats Report:

Region ID: NY

Workspace ID: NY20191015195337950000

Clicked Point (Latitude, Longitude): 42.26261, -74.87371

Time: 2019-10-15 15:53:53 -0400

Bankfull Dimensions:

- Difficult to identify bankfull in a degraded reach!
- Identify bankfull based on veg, sed, capacity, etc.

State and Federal Permits: 1.25x BF Width!

USGS StreamStats:

- Free tool,
- Good starting point,
- Drainage Area,
- Est. Bankfull dimensions,
- Peak flows.
- Field Truthing is needed!

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu
Bankfull Area	12.1	ft^2	5.22	28.1
Bankfull Depth	0.864	ft	0.382	1.95
Bankfull Streamflow	51.1	ft^3/s	7.5	348
Bankfull Width	14.4	ft	6.06	34.1

Information to Collect: Bankfull Dimensions

Bankfull Dimensions:

Very hard to id in incised reach!!

- Incipient point of flooding.
- NOT WETTED WIDTH!
- Depositional
- Look for stable reach
- This is not a reference!
- Est. BF can be <u>over-wide</u> in an unstable <u>reach!</u>
- Document existing conditions
 <u>above the influence</u> of the crossing.

StreamStats Flow Data: Estimates

Standard Error

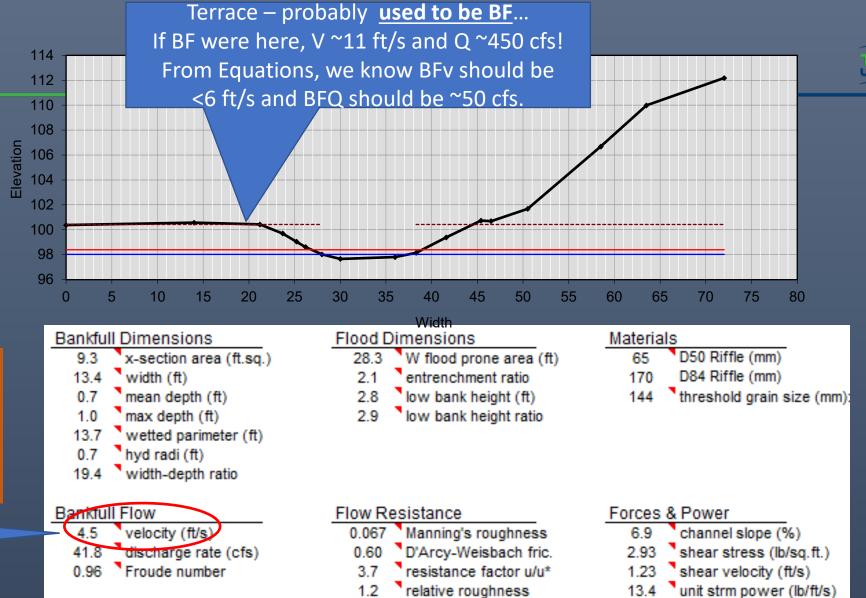
Peak-Flow Statistics Flow Report [2006 Full Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASF 7: Average Standard Error of

Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	Equiv. Yrs.
80-percent AEP flood	54.1	ft^3/s	25.5	25.5	4.8
66.7-percent AEP flood	66.2	ft^3/s	25.6	25.6	4.3
50-percent AEP flood	83.7	ft^3/s	25.8	25.8	4.4
20-percent AEP flood	139	ft^3/s	27	27	7.3
10-percent AEP flood	185	ft^3/s	28.2	28.2	10.1
4-percent AEP flood	255	ft^3/s	29.9	29.9	13.6
2-percent AEP flood	316	ft^3/s	31.5	31.5	15.8
1-percent AEP flood	383	ft^3/s	33.3	33.3	17.6
0.5-percent AEP flood	459	ft^3/s	35.3	35.3	18.9
0.2-percent AEP flood	574	ft*3/s	38.4	38.4	20.1

66.7% ~ BF Flow


1% = "100 year"

Cross Section for Stream Dimensions

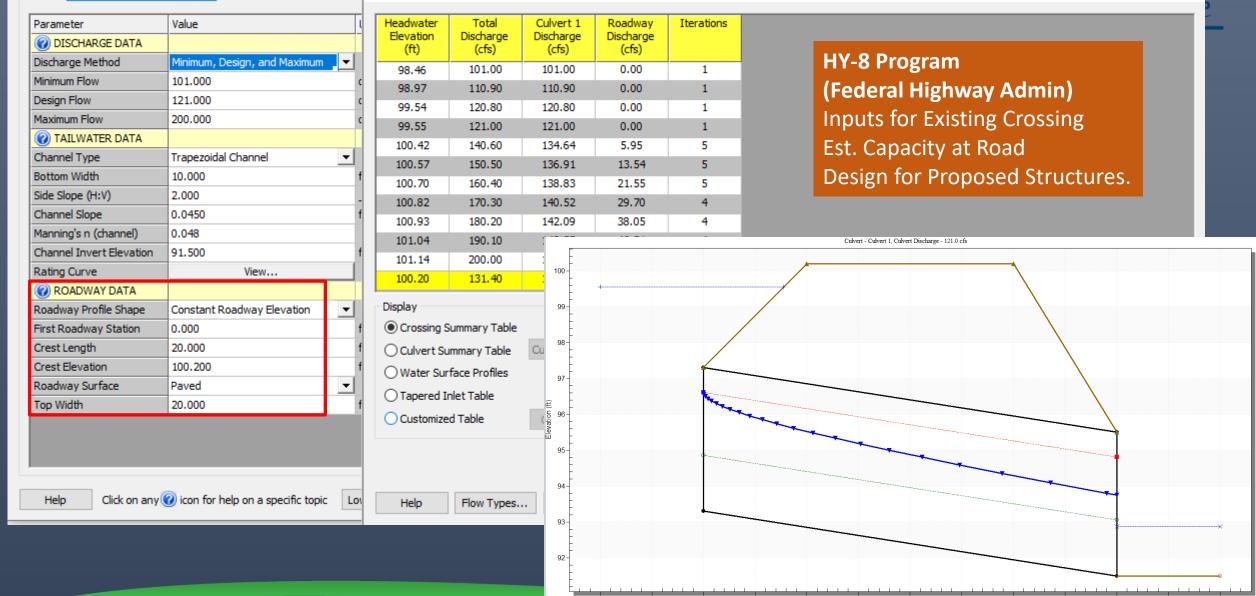
Put Profile, Pebble Count and Cross Section information together to calculate Forces and Power.

BF Velocity ~4 ft/s

Capacity: Published Data From USGS StreamStats

What are the peak flows in the channel? What can the existing structure convey? What will the proposed structure convey?

TROUT	17
TROUT	19
	TROUT


Statistic	Value	Unit	SE	SEp	Equiv. Yrs.
2 Year Peak Flood	86.9	ft^3/s	27.9	27.9	2.5
5 Year Peak Flood	139	ft^3/s	24.7	24.7	4.2
10 Year Peak Flood	179	ft^3/s	23.1	23.1	6.5
25 Year Peak Flood	233	ft^3/s	22	22	9.9
50 Year Peak Flood	277	ft^3/s	21.6	21.6	12.6
100 Year Peak Flood	323	ft^3/s	21.6	21.6	15
200 Year Peak Flood	371	ft^3/s	21.7	21.7	17.1
500 Year Peak Flood	437	ft^3/s	22.4	22.4	19.4

Capacity: On paper, this culvert can take the 50 year storm (2% storm)...but only if it isn't blocked with trees. Sediment and wood transport are essential considerations in culvert replacements.

Information to Collect: Culvert and Road Data

Station (ft)

Wood:

- Wood is a natural part of a stream;
- Build a crossing that prevents wood from blocking the entrance

Stream Simulation

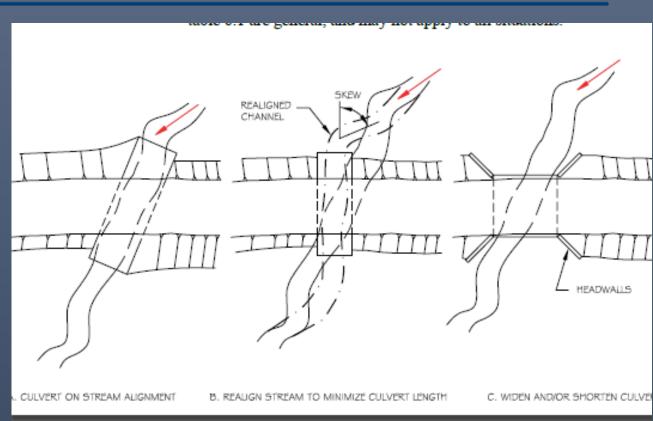
Table 4.1—Qualitative criteria for assessing the risk of plugging by woody debris at a road-stream crossing structure

Woody Debris Risk	Description
LOW	 Debris mostly absent or well anchored on banks and in channel.
	 Debris dispersed uniformly along the reach (i.e., it has not moved).
	 Available wood is much larger than the stream's ability to move it (i.e., large trees in small streams).
	 Little or no wood available for local recruitment.
	Bed material not anchored by debris.
	 Woody debris likely to remain at or near source area.
MODERATE	Most wood pieces anchored in the channel bed or channel banks.
	 Potential for local recruitment of wood.
	 History of occasional maintenance to remove wood at the crossing.
	 Small translational slides or undercut slopes adjacent to channel.
HIGH	 Unstable accumulations of woody debris present along banks, gravel bars, and channel constrictions.
	Most wood pieces not anchored to bed or banks.
	Considerable wood available for local recruitment.
	 History of frequent maintenance to remove wood at the crossing.
	 Upstream watershed susceptible to debris flows.

Is wood transport an issue at the crossing?

Cover

- Minimal cover is a common concern:
- Road is on the box;
- Not easy to raise road elevation for this site;
- Concrete box proposed to accommodate low cover.



Alignment issues

How to address skewed alignment?
A wider span helps with alignment
and wood transport.

ure 6.3—Three alignment options for a culvert where the road crosses the stream at an acute angle (high d-to-channel skew).

ADDITIONAL RIGHT-SIZING CONSIDERATIONS

Geotechnical:
Bedrock Depth
Soil Bearing Capacity
Footer design

Department of Environmental Conservation Office of General Services Department of State

JOINT APPLICATION FORM

For Permits for activities activities affecting streams, waterways, waterbodies, wetlands, coastal areas, sources of water, and endangered and threatened species.

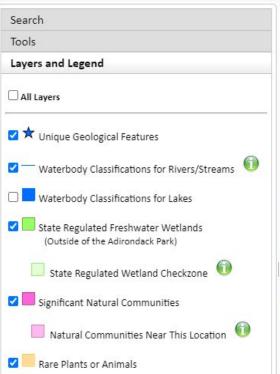
You must separately apply for and obtain Permits from each involved agency before starting work. Please read all instructions.

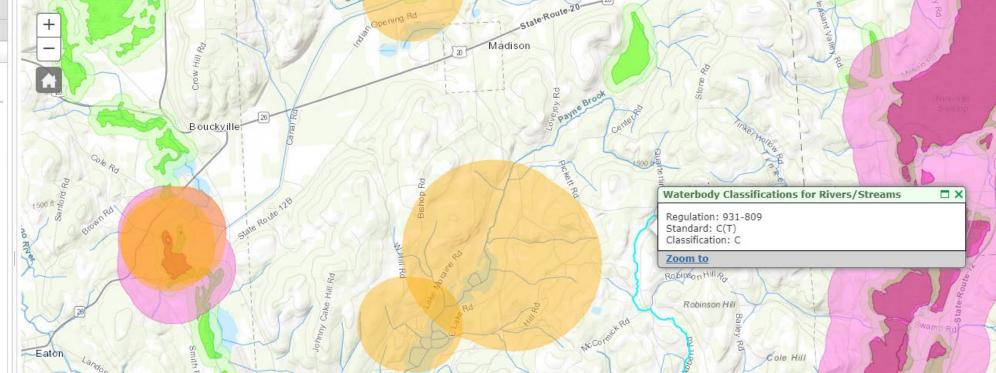
Grade Controls

- Grade controls prevent headcutting.
- Project USUALLY REQUIRES GC UPSTREAM AND DOWNSTREAM
 - MUNICIPAL ROW
 - LANDOWNER PERMISSION
- Place inside the new structure
- Construct with Rock or Logs
- Tie in critical to avoid outflanking
- Vertical spacing of GC is 0.7'.
- Horizontal spacing is guided by the slope of the proposed bed.
- Steeper beds need more structures.
- Each structure consists of a step and a pool.
- Provides bed diversity and cover.
- Can be used to retrofit a crossing.

Permitting!

- Even if Class C, need a DEC Water Quality Cert.
- Stream Classification
- Wetlands,
- Natural Communities/Rare Plants or Animals
- Regulated Flood Hazard Areas may require HEC-RAS analysis.
- Cultural Resources
- Dam(s) in watershed; Hazard Level
- Dewatering Regs vary by Region and Watershed!

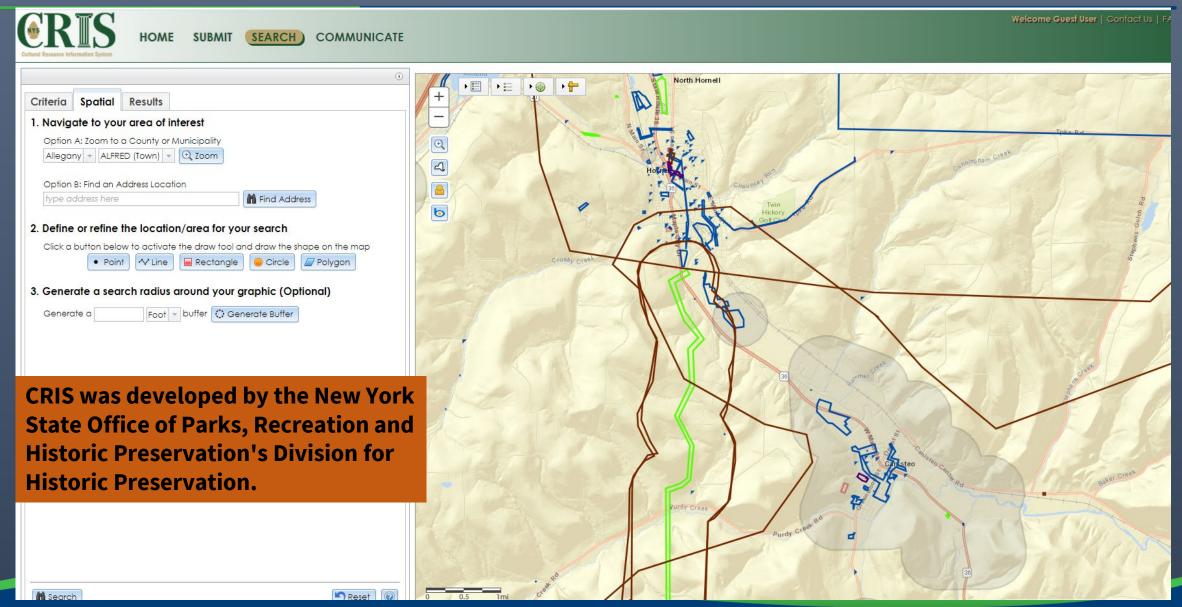



Base Map: T

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

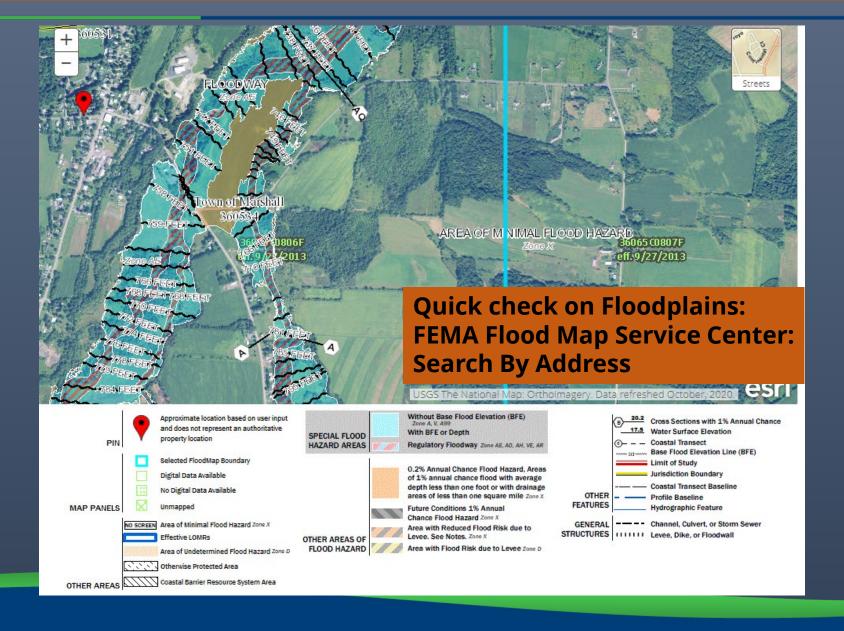
Environmental Resource Mapper

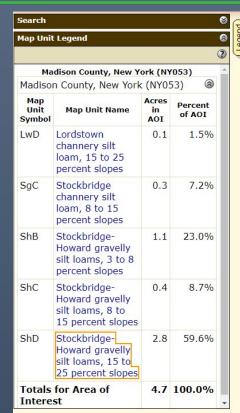
DEWATERING

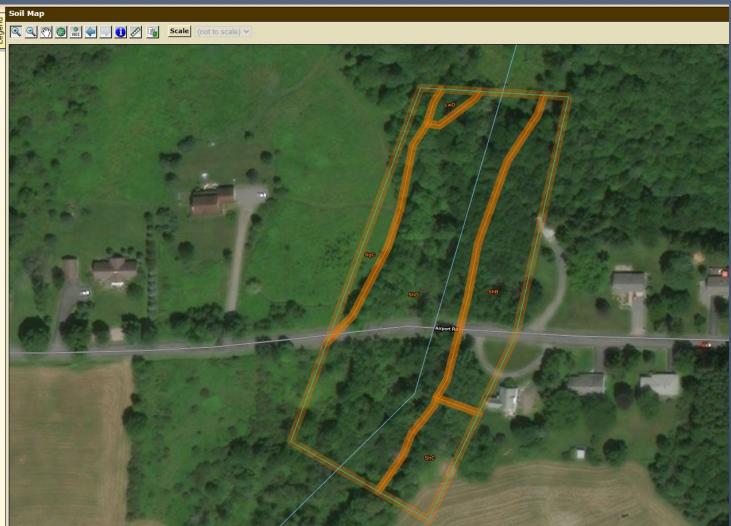


Pump around is often required for the duration of the project.

Pump around must remain active during curing time.


Permitting: Cultural Resources

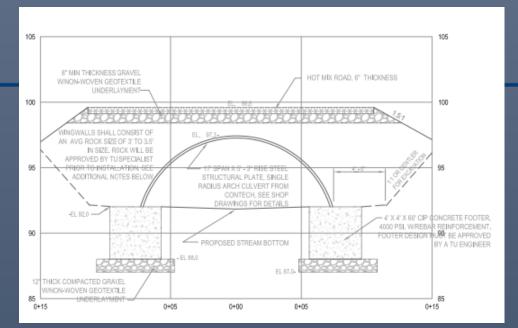

Permitting: Flood Zones: Work in regulated Flood Hazard Area may require HEC RAS



USDA NRCS Web Soil Survey: First step in Soil Bearing Capacity for structures.

Pipe Arch:

- We look at these if the site has a bankfull of 13' or less;
- Bury the pipe to create natural bed;
- Install with an excavator;
- Requires 18-30" of fill depending on span.
- Relatively low price;
- Quick Install
- No Footers needed
- Rises are high so not ideal for sites with minimal cover.
- NOT FOR STEEP SITES!!



Single Radius Arch

- Good for creating wide span with natural bed.
- Requires concrete footers
- Cast In Place requires curing time.
- Extends duration of road closure.
- Low price for structure relative to ABC and Concrete.
- But, Footer costs vary based on local contractors.
- Footer design usually based on Geotech.
- Requires 18"-30" cover depending on span.
- EXTENSIVE DE-WATERING REQUIREMENTS UNTIL CURE TIME COMPLETED.

Aluminum Box Culvert

Ideal for wide-span low rise scenarios.

Can be installed with 1.4' cover minimum.

Can be installed with full invert which reduces construction duration.

STATE REGS: NO BOTTOMS ON SLOPES >3%

If full invert is used (buried for natural bed): Max Cover is 4'

Not good for sites with more than 4.5' cover!

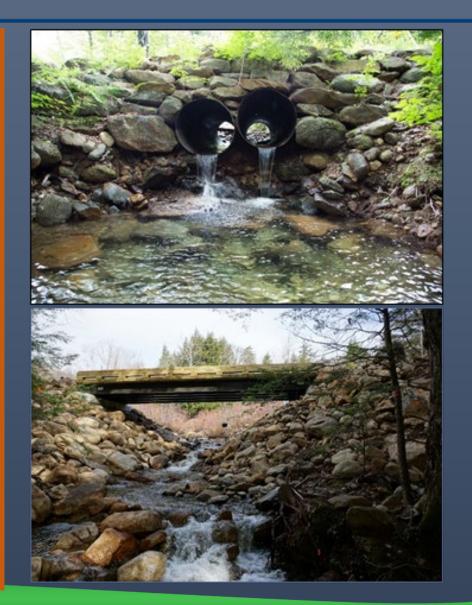
MATERIAL More costly than SRA and PA; LABOR is easier.

Place with an excavator.

Concerns with durability voiced by some partners.

Concrete:

- Ideal for wide span and minimal cover.
- Requires a crane for installation.
- Durable structure
- Most costly up front.
- 3 sided on footers or 4 sided box allow for natural bed.
- BURY THE BOX FOR A NATURAL BED!
- Use grade controls to hold bed material in place.



Pre-Fab Bridge (can be less than 20' span)

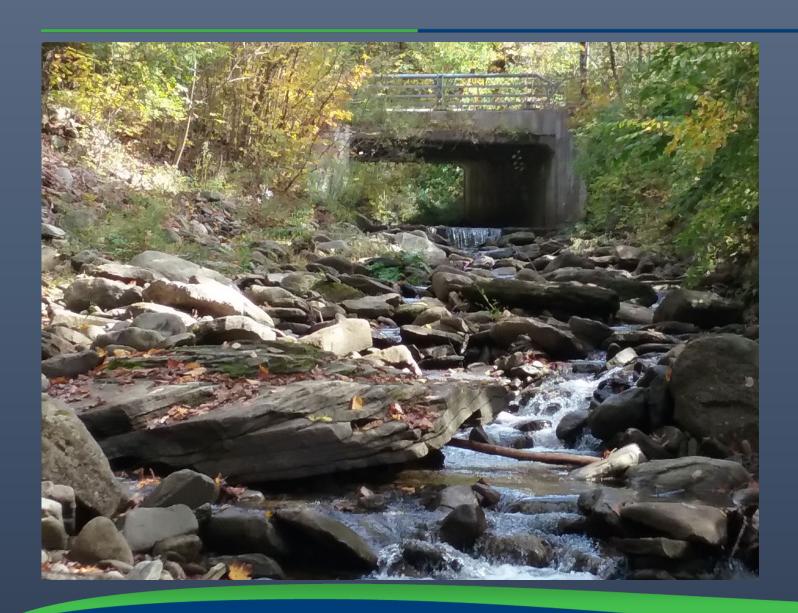
- Ideal for wide span, low cover.
- Pre-fab components can be installed quickly
- Competitive pricing with ABCs depending on required span.
- Cover not an issue
- Good for sites with alignment issues.
- Photo Courtesy Colin Lawson, Beebe River, NH

Bridges:

- Any span ≥20' is a "bridge" (NYS).
- If Bankfull width is over 17 feet, then the 1.25x rule can result in a bridge.
- If Drainage Area is ~ 0.75 square miles (~450 acres), a bridge may be recommended.
- Bridges usually require more stringent design
- Bridges require annual inspection to conform with NYSDOT requirements.
- Cost:Benefit important especially on low traffic crossings.

CAUTION!!

• Each site is different with different challenges and constraints!


Avoid Multiple Pipes – prone to blockage.

Smooth, round pipes set at-grade are common culprits in failures and barriers.

Retrofitting: Restoring Connectivity in Existing Structure

Consider Downstream
Grade Controls to
restore a natural bed
and reconnect the
stream.

Cost: Replacement is Expensive but there is help!

- DON'T REPLACE A CULVERT BASED SOLELY ON COST!
- ALMOST ALWAYS THE DRIVING FACTOR IN PERMANENTLY UNDERSIZED INFRASTRUCTURE!
- FEDERAL/STATE/NONPROFIT ASSISTANCE LIKELY AVAILABLE.

	Option 1	Option 2	
Size	16'8"x7'6"x50'	16'x8'4"x50'	
Flow (cfs)	900	800	
Туре	ABC	SRA	
Lifespan (yrs)	50	50	
Constructability	ABC with invert can reduce constrution duration	SRA requires footers to cure which prolongs construction time and road closure duration.	
Maintenance	Minimal	Minimal	
Road Closure	1 week	1 month	
Costs			
Structure	\$ 47,350.00	\$ 13,200.00	
Footer	\$ 11,313.00	\$ 11,378.00	
Grade Control	,	\$ 2,333.00	
Headwall/Wingwall		\$ 7,038.00	
Dewatering	\$ 5,000.00	\$ 5,000.00	
E&S/Restoration	\$ 1,000.00	\$ 1,000.00	
Labor	\$ 26,250.00	\$ 33,250.00	
Road Resurfacing	\$ 10,000.00	\$ 10,000.00	
Sub-Total	\$ 110,284.00	\$ 83,199.00	
15% Contingency	\$ 16,542.60	\$ 12,479.85	
Total Estimated	\$ 126,826.60	\$ 95,678.85	

Funding for your Culvert Replacement

New York State Funding

NYS Department of Conservation Water Quality Improvement Project Program Grant

Aquatic Habitat Restoration Projects

- Statewide projects to improve aquatic connectivity through culvert replacement of culverts considered an aquatic barrier
- Eligible Applicants Municipalities, Soil and Water Conservation Districts, Nonprofits

No Ag Non-Point Source Abatement and Control Projects

- Statewide projects to improve water quality culvert replacement address erosion caused by inadequately sized culverts.
- Eligible Applicants Municipalities, Soil and Water Conservation Districts

Climate Smart Communities Program Grants

State Support for Local Climate Action

Adaptation and Mitigation Projects

- Reducing future flood risk
- Preparing for future extreme events

Funding for your Culvert Replacement

Federal Funding Sources

FEMA Program

Pre and Post Disaster Funding – NEW Building Resilient Infrastructure and Communities (BRIC) Mitigation Planning Funding

- Statewide and National Ranking of Projects Tied to Hazard Mitigation Plans!
- New BRIC Program is focused on fostering NEW ways of thinking about mitigation planning
- Reduce vulnerabilities over the long term Natural Based Solutions
- Flood mitigation Partnerships
- Eligible Applicants Municipalities; September LOI, January Grant Deadline

USFWS Fish Passage Program

Conserve America's Fisheries

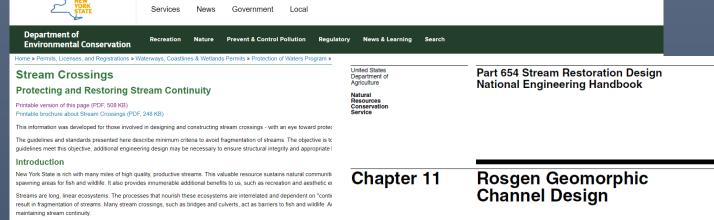
- Aquatic Passage Projects Brook Trout Focus
- Projects must meet permit requirements and improve connectivity in priority brook trout watersheds

Eastern Brook Trout Joint Venture

Aquatic Passage Projects – Brook Trout Focus

- Projects must meet permit requirements and improve connectivity in priority brook trout watersheds
- Coordinated with USFWS VERY COMPETITIVE as projects are ranked across the entire Brook Trout Range of the East Coast.

Helpful References


The design and condition of stream crossings determines whether a stream can function naturally and whether animals can in assuring the overall health of the system. This web page describes stream crossing designs that promote natural stream conditions.

Stream Continuity and Natural Comm
The continuity of streams, as well as their connection to ri
and installing stream crossings, the needs of invertebrates
seasonally, through the stream and adjacent areas. Findin

and connection to the watershed

Natural Channel Design REVIEW CHECKLIST

ACTIVITIES AUTHORIZED BY 2017 NATIONWIDE PERMIT WITHIN THE STATE OF NEW YORK

Expiration March 18, 2022

B. Nationwide Permits

USACE NATIONWIDE PERMITS

Questions?

Tracy Brown

Tracy.Brown@tu.org

Jacob Fetterman

Jacob.Fetterman@tu.org

Jo-Anne Humphreys

Joanne.Humphreys@tu.org

